Siavash Golkar

🖂 siavash.golkar@gmail.com

```
🎔 @SiavashGolkar
```

in sgolkar

Employment History

2023 – present		Research Scientist Polymathic-AI, New York University.
		Leading the development of next generation foundation models for scientific analysisFocus on long-context Transformers as well as mechanistic interpretability.
2020 – present		Machine Learning Consultant AirHop Communications.
		Reinforcement Learning applied to real-world systemsTime-series Forecasting of infrastructure load
2019 - 2023		Associate Reseach Scientist Flatiron Institute, Simons Foundation.
		Neuroscience inspired ML research
		 Applied interdisciplinary ML in biology and astrophysics
2016 – 2019		Postdoctorol Fellow Center for Cosmology & Particle Physics, New York University.
		• Research in continual learning and transfer in ML
		Applied machine learning in quantum systems
2015 - 2016		Postdoctorol Fellow Department of Applied Mathematics and Theoretical Physics, University of Cambridge.
		• Theoretical research in topological and effective field theory.
Education		
	-	
2009 – 2015		Ph.D. Theoretical Physics, University of Chicago . High Energy Physics, String Theory, Effective Field Theory
		Thesis: Geometry, topology and anomalies in condensed matter Effective Field Theories.
Skills		
Calina	-	
Coding		Expert in ML related programming and packages
		NVIDIA Certified in Data and Model Parallelism: How to Build, Train, and Deploy Large Neural Networks.
Teams		Experienced in leading ML teams from inception to deployment
Languages.		English(fluent), Farsi (fluent), French (advanced), Japanese (intermediate)
Misc.		Academic research, teaching, training, consultation, Lager typesetting and publishing.

Miscellaneous

- Author of over 20 publications in leading journals and conferences
- Area Chair and Top Reviewer for NeurIPS machine learning conference
- Recipient of the James Arthur Fellowship award (2016 2019)
- Co-organizer of the Machine Learning Seminar Series at Flatiron Institute (2020 2023)
- Visual artist experienced in both traditional and AI-assisted art (siavashgolkarart.com)

List of Publications

Conference Proceedings

2

3

S. Golkar, D. Lipshutz, T. Tesileanu, and D. B. Chklovskii, "An online algorithm for contrastive principal component analysis," in *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, IEEE, 2023, pp. 1–5.

A. Genkin, D. Lipshutz, **S. Golkar**, T. Tesileanu, and D. Chklovskii, "Biological learning of irreducible representations of commuting transformations," in *Advances in Neural Information Processing Systems*, 2022.

S. Golkar, T. Tesileanu, Y. Bahroun, A. Sengupta, and D. Chklovskii, "Constrained predictive coding as a biologically plausible model of the cortical hierarchy," in *Advances in Neural Information Processing Systems*, vol. 35, 2022, pp. 14155–14169.

P. Karimi, **S. Golkar**, J. Friedrich, and D. Chklovskii, "Learning a biologically plausible linear controller for nonlinear systems," in *APS March Meeting Abstracts*, vol. 2022, 2022, Noo–269.

J. Friedrich, **S. Golkar**, S. Farashahi, A. Genkin, A. Sengupta, and D. Chklovskii, "Neural optimal feedback control with local learning rules," in *Advances in Neural Information Processing Systems*, vol. 34, 2021, pp. 16 358–16 370.

6 S. Golkar, D. Lipshutz, Y. Bahroun, A. Sengupta, and D. Chklovskii, "A simple normative network approximates local non-hebbian learning in the cortex," in *Advances in neural information processing systems*, vol. 33, 2020, pp. 7283–7295.

S. Golkar, D. Lipshutz, Y. Bahroun, A. M. Sengupta, and D. B. Chklovskii, "A biologically plausible neural network for local supervision in cortical microcircuits," in *NeurIPS 2020 Workshop 'Beyond backpropagation'*, 2020.

D. Lipshutz, C. Windolf, **S. Golkar**, and D. B. Chklovskii, "A biologically plausible neural network for slow feature analysis," in *Advances in Neural Information Processing Systems 33*, 2020.

9 K. Cranmer, **S. Golkar**, and D. Pappadopulo, "Inferring the quantum density matrix with machine learning," in *ICML 2019 Workshop on Theoretical Physics for Deep Learning*, 2019.

S. Golkar, "Emergent structures and lifetime structure evolution in artificial neural networks," in *NeurIPS 2019 Workshop on Real Neurons & Hidden Units*, 2019.

1 S. Golkar and K. Cho, "Task-driven data verification via gradient descent," in *KDD 2019 Workshop on Data Collection, Curation, and Labeling for Mining and Learning (DCCL),* 2019.

S. Golkar, M. Kagan, and K. Cho, "Continual learning via neural pruning," in *NeurIPS 2019 Workshop* on Real Neurons & Hidden Units, 2019.

S. Golkar and K. Cranmer, "Backdrop: Stochastic backpropagation," in *ICML 2019 Workshop on Theoretical Physics for Deep Learning*, 2018.

Journal Articles

13

S. Golkar, M. Pettee, M. Eickenberg, *et al.*, "Xval: A continuous number encoding for large language models," *arXiv preprint arXiv:2310.02989*, 2023.

2 F. Lanusse, L. Parker, **S. Golkar**, *et al.*, "Astroclip: Cross-modal pre-training for astronomical foundation models," *arXiv preprint arXiv:2310.03024*, 2023.

D. Lipshutz, Y. Bahroun, **S. Golkar**, A. M. Sengupta, and D. B. Chklovskii, "A normative framework for deriving neural networks with multi-compartmental neurons and non-hebbian plasticity," *arXiv preprint arXiv:2302.10051*, 2023.

4 M. McCabe, B. R.-S. Blancard, L. H. Parker, *et al.*, "Multiple physics pretraining for physical surrogate models," *arXiv preprint arXiv:2310.02994*, 2023.

Invited Talks

Jan 2024	Serialization for Heterogenous Data Challenges <i>AI-driven discovery in physics and astrophysics</i> Center for Data-Driven Discovery, Kavli Institute, The University of Tokyo, Japan
Feb 2024	Prospects of LLMs in Fundamental Physics Large Language Models in Physics Symposium (LIPS) DESY, Hamburg, Germany
Mar 2024	(Plenary seminar) Towards Foundation Models for Science International Workshop on Advanced Computing and Analysis Techniques in Physics Research Stonybrook, New York, United States